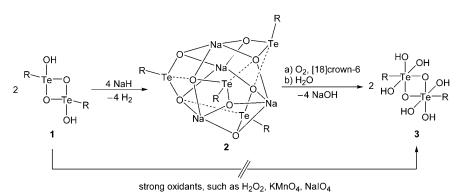
Telluronic Acids

DOI: 10.1002/anie.201002545

A Well-Defined Dinuclear Telluronic Acid [RTe(μ-O)(OH)₃]₂**

Jens Beckmann,* Jens Bolsinger, Pamela Finke, and Malte Hesse


In memory of Herbert Schumann

Compared to the well-established chemistry of sulfonic acids, RSO₃H, and their extensive utility in organic synthesis, the knowledge of the heavier congeners is rather modest. This discrepancy is arguably due to their tedious preparation and difficult handling. [1-4] Like sulfonic acids, selenonic acids, RSeO₃H,[1] are strong acids. However, unlike their sulfur analogues, selenonic acids are also strong oxidizing reagents; sufficiently strong to oxidize chloride ions to chlorine.[2] Although benzeneselenonic PhSeO₃H, was obtained by selenonation of benzene, [3] a more general route

for the preparation of selenonic acids, $RSeO_3H$, involves the oxidation of readily available seleninic acids, $RSeO_2H$, by $KMnO_4$ to give the potassium selenates $K[RSeO_3]$, which upon treatment with $HClO_4$ liberate the free acids. [4] Selenonic acids, $RSeO_3H$, are thermally unstable. Concentrated solutions of trifluoromethaneselenonic acid, F_3CSeO_3H , the selenium analogue of triflic acid, decompose violently at ambient temperature.

Progress in the synthesis of stable hexacoordinate organotellurium(VI) compounds, such as R_6 Te, Ph_5 TeF, and R_4 TeF₂ ($R = Me, Ph)^{[5]}$ prompted us to investigate the preparation of hitherto unknown telluronic acids, which was achieved for a kinetically stabilized prototype in two simple preparative steps (Scheme 1).

The dinuclear m-terphenyltellurinic acid [2,6-Mes₂C₆H₃Te(μ -O)(OH)]₂^[6] (1) was treated with sodium hydride to give the tetranuclear sodium m-terphenyltellurinate Na₄(2,6-Mes₂C₆H₃Te)₄(μ ₃-O)₈ (2), which was oxidized by dry O₂ in the presence of [18]crown-6 to afford the dinuclear m-terphenyltelluronic acid [2,6-Mes₂C₆H₃Te(μ -O)(OH)₃]₂ (3). In the absence of crown ether no reaction took place. It

Scheme 1. Synthesis of **2** and **3** (R = 2,6-Mes₂C₆H₃).

should also be noted that all attempts to prepare 3 by the direct oxidation of $\bf 1$ using various strong oxidants, such as H_2O_2 , $KMnO_4$, or $NaIO_4$, failed.

The molecular structure of **2** comprises an unprecedented Na₄Te₄O₈ cage structure that is completely shielded by four m-terphenyl groups (Figure 1).^[7] The spatial arrangement of the crystallographically equivalent Te atoms of **2** is distorted tetrahedral when taking into account the primary coordination sphere (O₂C donor set) and the stereochemically active lone pair. The Te–O bond lengths of 1.832(4) and 1.850(4) Å are significantly shorter than the average 'standard Te–O single bonds' of [(4-MeOC₆H₄)₂TeO]_n (2.063(2) Å)^[8] and indicate a formal bond order of 1.5. The coordination of the

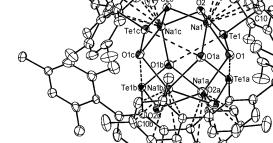


Figure 1. Molecular structure of 2; thermal ellipsoids are set at 30% probability. Selected interatomic distances [Å]: Te1-O1 1.850(4), Te1-···O1b 3.195(4), Te1-O2 1.832(4), Te1-C10 2.163(5), Na1-O1 2.568(5), Na1-O1a 2.357(4), Na1-O2 2.469(5), Na1-O2c 2.261(4).

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201002545.

^[*] Prof. Dr. J. Beckmann, [*] Dipl.-Chem. J. Bolsinger, Dipl.-Chem. P. Finke, Dr. M. Hesse Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstrasse 34/36, 14195 Berlin (Germany)

^[†] Present address: Institut für Anorganische und Physikalische Chemie, Universität Bremen Leobener Strasse, 28359 Bremen (Germany) E-mail: j.beckmann@uni-bremen.de

^[**] R = 2,6-Mes₂C₆H₃. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.

Te atoms is completed by a secondary Te···O contact of 3.195(4) Å, that is substantially shorter than the sum of van der Waals radii (3.5 Å).^[9]

The spatial arrangement of the sodium atoms is square pyramidal and defined by four Na–O bonds ranging from 2.261(4) to 2.568(5) Å as well as the η^6 -coordination with one of the mesityl group of the organic substituent (shortest distance from the ideal plane 1.703(4) Å). Of note is that **2** is a potential model compound for amorphous sodium tellurite glasses $(Na_2O)_x(TeO_2)_{1-x}$ (0.10 < x < 0.35), for which little structural information is available. [10] In solution, **2** is characterized by a ¹²⁵Te NMR spectroscopic chemical shift of δ = 1698 ppm, which is significantly different from that of the parent acid **1** (δ = 1403 ppm). [6]

The molecular structure of **3** comprises a dinuclear fourmembered Te_2O_2 ring structure that is completely shielded by two *m*-terphenyl groups (Figure 2). The spatial arrangement of the Te atoms of **3** is octahedral and defined by an O_5C

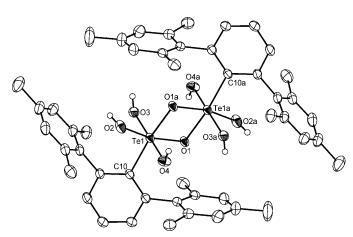


Figure 2. Molecular structure of 3; thermal ellipsoids are set at 30% probability. Selected bond lengths [Å]: Te1–O1 1.943(2), Te1–O1a 1.971(2), Te1–O2 1.918(2), Te1–O3 1.938(3), Te1–O4 1.918(3), Te1–C10 2.154(3).

donor set. The average Te–O bond lengths of 1.938(3) Å compare well with that of cubic orthotelluronic acid Te(OH)₆ (1.912(6) Å). The IR spectrum of **3** shows two sharp intense signals at $\tilde{\nu}=3665$ and 3616 cm⁻¹, which are assigned to OH stretching vibrations. The ¹²⁵Te NMR spectrum (CDCl₃) of **3** shows one signal at $\delta=783$ ppm.

To estimate the relative stability of meta-, meso-, and orthophenylchalcogonic acids, DFT calculations were per-

formed at the B3PW91/TZ level of theory (Figure 3). [12] These calculations confirm that for the lighter elements the tetracoordinated metaphenylchalcogonic acids $PhE(=O)_2OH$ ($E=S,Se; (0 \text{ kJ mol}^{-1})$) are more stable than the pentacoordinated mesophenylchalcogonic acids $PhE(=O)(OH)_3$ (174 kJ mol⁻¹ for E=S; 47 kJ mol⁻¹ for E=Se) and the hexacoordinated orthophenylchalcogonic acids $PhE(OH)_5$ (263 kJ mol⁻¹ for E=S; 46 kJ mol⁻¹ for E=Se) and paraphenylchalcogonic acid $[PhE(\mu_2-O)(OH)_3]_2$ (241 kJ mol⁻¹ for E=S; 33 kJ mol⁻¹ for E=Se).

By contrast, the tetracoordinated metaphenyltelluronic acid PhTe(=O)₂OH (173 kJ mol⁻¹) and the pentacoordinated mesophenyltelluronic acid PhTe(=O)(OH)₃ (101 kJ mol⁻¹) are less stable than the hexacoordinated orthophenyltelluronic acid PhTe(OH)₅ (3 kJ mol⁻¹) and paraphenylchalcogonic acid [PhTe(μ -O)(OH)₃]₂ (0 kJ mol⁻¹), which have nearly the same stability. MP2 calculations performed at the same level of theory confirm the same trend; however, the energy differences are slightly more pronounced than for the DFT calculations (Figure 3).

Both the experimental and computational results uniformly show that a qualitative change in structures of arylchalcogonic acids occurs when going from 4th to the 5th period. We are currently investigating the reactivity of 3 and related compounds.

Experimental Section

2: A mixture of 1 (1.00 g, 1.10 mmol) and NaH (56 mg, 2.3 mmol) in toluene (40 mL) was stirred for 12 h at room temperature. The solution was filtered and the solvent removed in vacuum. The solid residue was recrystallized from MeCN/THF to give colorless crystals of 2 (890 mg, 0.45 mmol, 82%).

¹H NMR (CDCl₃, 400 MHz): δ = 7.39 (t, 1 H, Ar), 6.89 (d, 2 H, Ar), 6.27 (s, 4 H, Ar), 2.18 (s, 6 H, CH₃), 1.96 (s, 12 H, CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 147.5, 144.6, 137.9, 137.6, 137.0, 130.0, 129.3, 108.0 (Ar), 21.2, 21.1 (CH₃) ppm. ¹²⁵Te NMR (CDCl₃, 126 MHz): δ = 1698 ppm. IR (KBr): $\bar{\nu}_{OH}$ = 3665 and 3616 cm⁻¹. Elemental analysis calcd (%) for C₉₆H₁₀₀Na₄O₈Te₄ (1984.16): C 58.11, H 5.08; found: C 58.49, H 5.39.

3: Oxygen was bubbled through a hot solution of 2 (800 mg, 0.40 mmol) and [18]crown-6 (422 mg, 1.6 mmol) in THF (50 mL) for 2 h. Water (5 mL) was added and the layers separated. The organic layer was dried over Na_2SO_4 and the solvent removed in vacuum. The solid residue was recrystallized from THF/hexane and the solid dried in vacuum to give 3 as colorless solid (320 mg, 0.12 mmol, 50%).

¹H NMR (CDCl₃, 400 MHz): δ = 7.43 (t, 1H; Ar), 6.92 (d, 2H; Ar), 6.29 (s, 4H; Ar), 2.22 (s, 6H; CH₃), 1.98 ppm (s, 12H; CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ = 146.9, 144.1, 137.2, 136.8, 136.0,

Figure 3. Relative stability of meta-, meso-, ortho-, and paraphenylchalcogonic acids (DFT/B3PW91 calculations for S, Se, and Te compounds; MP2 calculations for Te compounds in parenthesis).

8031

Communications

129.9, 128.5, 126.9 (Ar), 20.8, 20.7 ppm (CH₃). ¹²⁵Te NMR (CDCl₃, 126 MHz): δ = 783 ppm. Elemental analysis calcd (%) for C₄₈H₅₆O₈Te₂ (1016.23): C 56.73, H 5.55; found: C 56.49, H 5.43.

Received: April 28, 2010

Published online: September 13, 2010

Keywords: hypervalent compounds · oxides · tellurium

- [1] T. W. Campbell, H. Walker, G. H. Coppinger, *Chem. Rev.* 1952, 50, 279-349.
- [2] a) H. W. Doughty, Am. Chem. J. 1909, 41, 326-337; b) R. Lesser,
 R. Weiss, Ber. Dtsch. Chem. Ges. 1913, 46, 2640-2658.
- [3] a) M. Schmidt, J. Wilhelm, Chem. Ber. 1964, 97, 872 875; b) K.
 Dostál, Z. Žak, M. Ĉernik, Chem. Ber. 1971, 104, 2044 2052.
- [4] a) A. Haas, K.-U. Weiler, Chem. Ber. 1985, 118, 943-951; b) A.
 Haas, K. Schinkel, Chem. Ber. 1990, 123, 685-689; c) R. Boese,
 A. Haas, S. Herkt, M. Pryka, Chem. Ber. 1995, 128, 423-428.
- [5] a) L. Ahmed, J. A. Morrison, J. Am. Chem. Soc. 1990, 112, 7411–7413; b) M. Minoura, T. Sagami, K. Akiba, C. Modrakowski, A. Sudau, K. Seppelt, S. Wallenhauer, Angew. Chem. 1996, 108, 2827–2829; Angew. Chem. Int. Ed. Engl. 1996, 35, 2660–2662; c) M. Minoura, T. Mukuda, T. Sagami, K. Akiba, J. Am. Chem. Soc. 1999, 121, 10852–10853; d) M. Miyasato, M. Minoura, K. Akiba, Angew. Chem. 2001, 113, 2746–2748; Angew. Chem. Int. Ed. 2001, 40, 2674–2676; e) M. Minoura, T. Sagami, K. Akiba, Organometallics 2001, 20, 2437–2439; f) M. Miyasato, T. Sagami, M. Minoura, Y. Yamamoto, K. Akiba, Chem. Eur. J. 2004, 10, 2590–2600; g) T. M. Klapötke, B. Krumm, K. Polborn, I. Schwab, J. Am. Chem. Soc. 2004, 126, 14166–14175.
- [6] J. Beckmann, P. Finke, M. Hesse, B. Wettig, Angew. Chem. 2008, 120, 10130–10133; Angew. Chem. Int. Ed. 2008, 47, 9982–9984.
- [7] a) Crystal data for **2**·4 THF ($C_{112}H_{132}Na_4O_{12}Te_4$): M_r = 2272.54, tetragonal space group $I\bar{4}$, a=b=19.238(6), c=14.276(5) Å, V=5283(3) Å³, Z=2, $\rho_{\rm calcd}=1.428~{\rm mg\,m^{-3}}$, crystal dimensions $0.25\times0.31\times0.42~{\rm mm^3}$. 10780 collected and 6387 unique reflections. Final residuals $R_1=0.0419$, $wR_2=0.0838~(I>2\sigma(I))$; $R_1=0.0708$, $wR_2=0.0912$ (all data). GooF = 0.877, 298 parameters. CCDC 782648 contains the supplementary crystallographic data

- for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.cdc. cam.ac.uk/data_request/cif; b) Crystal data for 3·4THF: ($C_{64}H_{88}O_{12}Te_2$): M_r =1304.54, monoclinic space group $P2_1/n$, a=13.4434(9), b=15.9771(9), c=16.170(1) Å, β =113.191(5)°, V=3192.5(3) ų, Z=2, ρ_{calcd} =1.357 mg m³, crystal dimensions $0.5 \times 0.5 \times 0.5$ mm³. 20749 collected and 8557 unique reflections. Final residuals R_1 =0.0401, wR_2 =0.1113 (I>2 $\sigma(I)$); R_1 =0.0572, wR_2 =0.1280 (all data). GooF=1.055, 352 parameters. CCDC 782649 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data_request/cif.
- [8] J. Beckmann, D. Dakternieks, A. Duthie, F. Ribot, M. Schürmann, N. A. Lewcenko, Organometallics 2003, 22, 3257-3261.
- [9] A. Bondi, J. Phys. Chem. 1964, 68, 441-451.
- [10] Sodium tellurite glasses $(Na_2O)_x(TeO_2)_{1-x}$ (0.10 < x < 0.35) are promising optical materials characterized by a high refractive index, good and wide IR transmittance, and a large third order non-linear optical susceptibility. These remarkable properties arise from the free electron pair in the structural motifs of the Te^{IV} sites. While the network builder (TeO₂) itself is only a conditional glass former, the sodium oxide modifier (Na₂O) gives rise to stable and chemically durable glasses. The modifier changes the number of TeO₄ and TeO₃ structural units and thus, the glass transition temperature and non-linear optical response; a) R. El-Mallawany, Mater. Chem. Phys. 1998, 53, 93-120; b) R. El-Mallawany, Mater. Chem. Phys. 1999, 60, 103-131; c) R. El-Mallawany, Mater. Chem. Phys. 2000, 63, 109-115; d) J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, D. R. Haeffner, S. D. Shastri, J. Non-Cryst. Solids 2000, 274, 1-8; e) J. C. McLaughlin, S. L. Tagg, J. W. Zwanziger, J. Phys. Chem. B 2001, 105, 67-75.
- [11] L. Falck, O. Lindqvist, Acta Crystallogr. Sect. B 1978, 34, 3145–3146.
- [12] Calculations were performed both at the DFT/B3PW91 as well as at the MP2 level of theory. For tellurium an effective core potential with a cc-pVTZ basis set was applied, the split-valence 6-311+G(2df,p) basis set for all other atoms was used. Stationary points were characterized as true minima by frequency calculations. See Supporting Information for details.